

Dossier final - AAP Idéation Saison 3

Energétique

Energies d'utilisation

Nous nous basons sur une simulation réalisée avec l'outil Trip Simulator du site ebikes.ca afin d'évaluer la consommation énergétique en roulage avec les hypothèses suivantes :

Coefficient de résistance au roulement Cr = 0,015

 S.Cx = 1,8 (surface frontale d'environ 1 m², Cx estimé à 1,8 de par la verticalité du parebrise et de la lunette arrière)

• Poids Total en Charge: 180 kg

Poids total en ordre de marche : 65 kg

Batteries: 10 kgConducteur: 85 kgBagages 20: kg

Nous avons réalisé une synthèse afin d'évaluer l'impact sur les trajets des personae sur les mesures suivantes :

La consommation par kilomètre

- La vitesse moyenne
- La durée du trajet
- La consommation nette d'énergie (la récupération d'énergie étant possible)

Persona 1

Concernant le scénario de la persona 1 on peut conclure que seule la solution BIKLOOW₄₅ est adaptée. Ceci est dû au poids total en ordre de marche élevé et au dénivelé positif sur le trajet retour avec une pente atteignant 10%. Il est possible de ne prévoir qu'une seule batterie si la recharge est possible sur le lieu de travail afin d'assurer les distances supplémentaires liées aux activités sportives et courses. C'est également sur ce scénario que la récupération d'énergie a le plus d'intérêt.

Persona 2

Pour la persona 2, les 2 options sont possibles cependant, de par la durée du trajet, la solution BIKLOOW₄₅ est préférable avec 2 batteries et une recharge sur le lieu de travail.

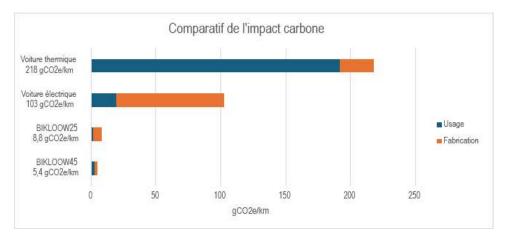
Persona 3

Le scénario de la persona 3 amène aux mêmes conclusions que pour la persona 2.

Données de sortie ACV

Avec une consommation WMTC évaluée à **45 Wh/km** (20 Wh/km en version VAE) et en appliquant le coefficient de durabilité de **1,13** (qui pourra être amélioré avec une batterie répondant à la règlementation 2023/1542), on obtient avec les paramètres standards des émissions sur la durée de vie du véhicule :

- BIKLOOW₂₅: 525 kgCO2e soir 8,8 gCO2e/p.km en utilisation
- BIKLOOW₄₅: 809 kgCO2e soit 5,4 gCO2e/p.km en utilisation


Ceci est cohérent avec le fait qu'une vitesse d'utilisation supérieure permet d'accroître les cas d'usage et les distances.

A noter : le châssis et la structure du véhicule sont fabriqués à partir de PE-HD recyclé (32% du poids total du véhicule) mais cet aspect n'est pas pris en compte dans la calculette empreinte carbone.

Comparatif des solutions

On peut voir sur ce comparatif que l'impact carbone est plus favorable à la version 45 km/h, ceci est dû au fait que l'impact de fabrication est sensiblement le même pour les 2 versions mais que la version 25 km/h étant susceptible de parcourir une distance moindre sur sa durée de vie, le calcul rapporté au kilomètre est défavorable.

Dans les 2 versions on observe donc un gain significatif par rapport à la voiture traditionnelle, qu'elle soit thermique ou électrique : respectivement **40x** et **19x** plus faible avec le **BIKLOOW**₄₅.

En comparant les solutions par rapport aux cas d'usages types identifiés au travers des personae, on met en avant que :

- Le véhicule BIKLOOW permet une réduction très importante de l'empreinte carbone annuelle : de 10% à 30% de l'empreinte carbone moyenne annuelle d'un citoyen français
- Le gain économique d'un point de vue coût énergétique seul est significatif sans toutefois en faire un levier suffisant fort pour inciter l'achat

0(
Comparatif	hilan	carnone	AT ACO	nomidile	annuel
Comparati	Ditail	Carbone	CLCCO	nonnique	unnuct

	Persona 1	Persona 2	Persona 3			
Distance parcourue	5 818	9 570	13 920	km/an		
Consommation	262	431	626	kWh/an		
Emissions de CO2						
BIKLOOW45	31	52	75	kgCO2e/an		
Voiture électrique	599	986	1 434	kgCO2e/an		
Voiture thermique	1 268	2 086	3 035	kgCO2e/an		
Coût énergétique BIKLOOW45	53€	87€	126€	€/an		
Voiture électrique	201€	330 €	480 €	€/an		
Voiture thermique	628€	1 034 €	1 503 €	€/an		
Hypothèses:						
Electricité	0,2016 €	Coût du kWh base				
Carburant	1,8	€/l carburant	Emissions CO2			
BIKLOOW45	45	Wh/km	5,4	gCO2e/km		
Voiture thermique	6	V100 km	103	gCO2e/km		
Voiture électrique	171	Wh/km	218	gCO2e/km		

Apport du projet dans la décarbonation de la mobilité

Sans entrer dans un calcul précis type Discounted Carbon Flow, on obtient un gain cumulé d'environ **2432 tonnes d'équivalent CO2** sur 10 ans de commercialisation en considérant les hypothèses du business plan.

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
GAINS EMISSIONS DE CO2										
Nombre de véhicules commercialisés (unités)										
BIKLOOW25		3	15	20	20	20	20	20	20	20
BIKLOOW45			5	10	20	40	50	50	50	50
Gain émissions de CO2 (tCO2e)										
BIKLOOW25			-6,0	-36,0	-76,1	-116,1	-156,2	-196,2	-236,2	-276,3
BIKLOOW45				-10,2	-30,5	-71,2	-152,6	-254,3	-356,1	-457,8
Hypothèses gains CO2						Gain sur la période		-2 432	tCO2e	
Distance moyenne parcourue	9 5 7 0	km/an/véhicule							,	
Emissions de CO2 voiture thermique	218	gCO2e/km	Gain par rappor	t au véhicule thermique						
Emissions de CO2 BIKLOOW25	8,8	gCO2e/km	-209,2	gCO2e/km						
Emissions de CO2 BIKLOOW25	5,4	gCO2e/km	-212,6	gCO2e/km						

Ce gain serait celui généré par à peine 433 véhicules BIKLOOW produits sur cette période.

Le fait de mettre à disposition la conception en Open Source permettrait de créer un effet levier en répliquant ce modèle et le gain associé sur d'autres territoires.